Strong duality in Lasserre's hierarchy for polynomial optimization
نویسندگان
چکیده
A polynomial optimization problem (POP) consists of minimizing a multivariate real polynomial on a semi-algebraic set K described by polynomial inequalities and equations. In its full generality it is a non-convex, multi-extremal, difficult global optimization problem. More than an decade ago, J. B. Lasserre proposed to solve POPs by a hierarchy of convex semidefinite programming (SDP) relaxations of increasing size. Each problem in the hierarchy has a primal SDP formulation (a relaxation of a moment problem) and a dual SDP formulation (a sum-of-squares representation of a polynomial Lagrangian of the POP). In this note, when the POP feasibility set K is compact, we show that there is no duality gap between each primal and dual SDP problem in Lasserre’s hierarchy, provided a redundant ball constraint is added to the description of set K. Our proof uses elementary results on SDP duality, and it does not assume that K has an interior point.
منابع مشابه
Certifying convergence of Lasserre's hierarchy via flat truncation
Consider the optimization problem of minimizing a polynomial function subject to polynomial constraints. A typical approach for solving it globally is applying Lasserre’s hierarchy of semidefinite relaxations, based on either Putinar’s or Schmüdgen’s Positivstellensatz. A practical question in applications is: how to certify its convergence and get minimizers? In this paper, we propose flat tru...
متن کاملConvergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization
We consider the problem of minimizing a continuous function f over a compact set K. We analyze a hierarchy of upper bounds proposed by Lasserre in [SIAM J. Optim. 21(3) (2011), pp. 864−885], obtained by searching for an optimal probability density function h on K which is a sum of squares of polynomials, so that the expectation ∫ K f(x)h(x)dx is minimized. We show that the rate of convergence i...
متن کاملA note on symmetric duality in vector optimization problems
In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".
متن کاملWEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS
The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...
متن کاملISSN 1342-2804 Invariance under Affine Transformation in Semidefinite Programming Relaxation for Polynomial Optimization Problems
Given a polynomial optimization problem (POP), any affine transformation on its variable vector induces an equivalent POP. Applying Lasserre's SDP relaxation to the original and the transformed POPs, we have two SDPs. This paper shows that these two SDPs are isomorphic to each other under a nonsingular linear transformation, which maps the feasible region of one SDP onto that of the other isomo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optimization Letters
دوره 10 شماره
صفحات -
تاریخ انتشار 2016